If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3p^2-16p+16=0
a = 3; b = -16; c = +16;
Δ = b2-4ac
Δ = -162-4·3·16
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-8}{2*3}=\frac{8}{6} =1+1/3 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+8}{2*3}=\frac{24}{6} =4 $
| 8a-10=44 | | P=3y+11 | | 3x^2+4x=13x | | x/32=0.875 | | 54/n=9 | | -3x+7(3x-3)=-39-6x | | x.225x=145 | | 72/n=8 | | -14-22=4x | | -12=44+2p | | (-3x-5)-2x=2x-19 | | -4x-8x-15=-63 | | 4x=17-1 | | 32+16=4y | | (3x+13)=(5x-3) | | C(x)=0.25x50+14.75 | | C(x)=0.25x(50)+14.75 | | 2^-2x=(1/32)^x-3 | | 32^(2x)=8 | | 2x=9x+x | | x+2(-4x+1)=4x-20 | | 6-8x=10x-14 | | C(x)=0.25x+14.75 | | m/24=0.625 | | (14x-20)+(5x+10=180 | | 5.3x+5=2.3x+20 | | 21-4x=2(3x+12) | | -(x)-5x=-x-15 | | 2,256÷x=48 | | 40-8x=6(1-7x) | | u/3-9=9 | | a.a.a=3a-14 |